ABC Conjecture in Function Fields

Ming Yean Lim

February 21, 2024

1 Introduction

In number theory, we often work over the ring \mathbb{Z} , its field of fractions, or a number field, i.e. a finite field extension K/\mathbb{Q} . The ring $\mathbb Z$ shares many properties in common with the ring of polynomials over a finite field $\mathbb{F}_q[T]$. For instance:

- they are both Euclidean domains, hence are PIDs, UFDs, and Dedekind domains;
- they have countably many primes;
- they have finite groups of units;
- any quotient by a non-zero ideal is finite.

One of the most basic questions one can ask in number theory is the solutions to Diophantine equations, among the most famous is

$$
x^N + y^N = z^N
$$

where $N \geq 3$ and $x, y, z \in \mathbb{Z}$. Fermat's last theorem asserts that this has no non-trivial solutions. One can ask the same question over $\mathbb{F}_q[T]$, and indeed we will see that the analogue of Fermat's last theorem is true in this setting.

The analogue of a number field over $\mathbb{F}_q[T]$ is a *global function field*, it is simply a finite extension of $\mathbb{F}_q(T)$. More generally, a *function field over* F is a finite extension K of $F(T)$. We will assume F is algebraically closed in K , in this case we call F the *constant field*.

Recall that for a number field K , non-archimedian valuations of K correspond to primes of its ring of integers \mathcal{O}_K . In other words:

Proposition 1.1. We have a correspondence

$$
\{primes in \mathcal{O}_K\} \longleftrightarrow \{DVRs \ R \subseteq K \ with \ \operatorname{Frac}(R) = K\}
$$
\n
$$
\mathfrak{p} \longmapsto (\mathcal{O}_K)_{\mathfrak{p}}
$$

Proof. Let R be a DVR in K with maximal ideal P. R contains $\mathbb Z$ and is integrally closed in K, hence $\mathcal{O}_K \subseteq R$. $\mathfrak{p} = P \cap \mathcal{O}_K$ is a prime^{[1](#page-1-0)} of \mathcal{O}_K . If $x \in \mathcal{O}_K \setminus \mathfrak{p}$, then $x \notin P$, so $x^{-1} \in R$. This shows that $(\mathcal{O}_K)_{\mathfrak{p}} \subseteq R$. Finally, $(\mathcal{O}_K)_{\mathfrak{p}}$ is a DVR, and DVRs are maximal subrings inside their fields of fractions, so $R = (\mathcal{O}_K)_{\mathfrak{p}}$.

This motivates the following definition:

Definition 1.2. Let K/F be a function field. A *prime* in K is a DVR R with maximal ideal P such that $F \subseteq R \subseteq K$ and Frac $(R) = K$. We will often refer to prime by its maximal ideal P. We let $v_P : K^\times \to \mathbb{Z}$ denote the corresponding valuation. The *degree* of a prime P is deg $P = [R/P : F]$.

Lemma 1.3. deg P is finite.

Proof. Pick $y \in P \setminus F$. We will show $[R/P : F] \leq [K : F(y)]$. Suppose $u_1, \ldots, u_m \in R$ are such that their reductions modulo $P, \overline{u}_1, \ldots, \overline{u}_n$ are linearly independent over F. We will show u_1, \ldots, u_m are linearly independent over $F(y)$. Suppose not, then we have polynomials $f_i \in F[y]$ such that $f_1u_1 + \ldots + f_mu_m = 0$. We may assume that y does not divide all f_i , so reducing this modulo P gives a linear relation between the \overline{u}_i , contradiction.

Example 1.4. Let's find the primes of $K = F(T)$. Suppose R is a prime in K, v the corresponding valuation.

Case 1: Suppose $v(f) \geq 0$ for all $f \in F[T]$. Pick an irreducible f such that $v(f) > 0$. If $g \in F[T]$ is not divisible by f, then $af + bg = 1$ for some $a, b \in F[T]$. Then $v(bg) =$ $v(1-af) = 0$, so $v(g) = 0$. We get that v is the f-adic valuation, denoted v_f , and $R = F[T]_{(f)}.$

<u>Case 2</u>: There is an irreducible $f \in F[T]$ with $v(f) < 0$. Write $f(T) = a_n T^n + \ldots$ $a_1T + a_0$ where $a_i \in F$. From this we see that $v(T) < 0$. We may assume $v(T) = -1$, thus for $g \in F[T]$, $v(g) = -\deg g$, and $R = F[T^{-1}]_{(T^{-1})}$. We write $v_{\infty} = v$.

In case 1 above, the degree of the prime is the dimension of $F[T]_{(f)}/(f)F[T]_{(f)} \cong$ $F[T]/(f)$ over F, which is the degree of the polynomial f. These primes also correspond to the points on an affine piece of \mathbb{P}_F^1 . The prime in case 2 corresponds to the point at infinity. Note that K is the function field of \mathbb{P}^1_F .

In general, one may associate to a function field K/F a nonsingular complete^{[2](#page-1-1)} curve C over F such that K is the function field of C. See [\[Har77,](#page-10-0) $\S1.6$] for details.

Example 1.5. Let $E: y^2 = f(x)$ be an elliptic curve over F. Then its function field is

$$
K = \text{Frac } \frac{F[x, y]}{(y^2 - f(x))}
$$

 2 proper over F

¹p is nonzero: We have $\mathbb{Q} \not\subseteq R$ as the integral closure of \mathbb{Q} in K is K. Thus there is an integer prime p such that $1/p \notin R$, so $p \in \mathbb{Z} \cap P \subseteq \mathfrak{p}$.

2 Divisors

In this section we will introduce divisors, which play a similar role to fractional ideals in number fields. We give the definitions necessary to state the Riemann-Roch theorem for function fields.

Let K/F be a function field.

Definition 2.1. A *divisor* of K is a formal linear combination $D = \sum_P n_P P$ of primes P in K. The group of divisors of K is the abelian group of such divisors, denoted $Div(K)$. We say D is *effective* if all $n_P \geq 0$, and denote this by $D \geq 0$.

To each $a \in K^{\times}$, we may associate a divisor

$$
(a) = \sum_{P} v_P(a)P
$$

It turns out that there are only finitely many P such that $v_P(a) \neq 0$, so this is a well-defined divisor (see [\[Ros02,](#page-10-1) Proposition 5.1]). We thus have a homomorphism $(\cdot): K^{\times} \to Div(K)$, an element of its image is called a principal divisor.

We also define

$$
(a)_0 = \sum_{v_P(a) > 0} v_P(a)P
$$
 and $(a)_{\infty} = \sum_{v_P(a) < 0} -v_P(a)P$

called the zero divisor and polar divisor of a respectively. Thus divisors allow us to keep track of zeros and poles of functions. We define the degree of a divisor by extending deg linearly:

$$
\deg\left(\sum_{P} n_{P}P\right) = \sum_{P} n_{P} \deg P
$$

giving a homomorphism deg : $Div(K) \to \mathbb{Z}$.

Proposition 2.2. For $a \in K^{\times}$, we have

- 1. $deg(a)_0 = deg(a)_{\infty} = [K : F(a)],$
- 2. $deg(a) = 0$,
- 3. (a) = 0 iff $a \in F^{\times}$

Proof. See [\[Ros02,](#page-10-1) Proposition 5.1]. Note that $a \in F^{\times}$ implies $(a) = 0$ is trivial since we ask that $F \subseteq P$ for primes P.

Definition 2.3. To each $D \in Div(K)$ we associate an F-vector space

$$
L(D) = \{ x \in K^{\times} \mid (x) + D \ge 0 \} \cup \{ 0 \}
$$

called the Riemann-Roch space. Its dimension over F is finite, denoted by $\ell(D)$.

We can interpret $L(D)$ as the space of functions with poles no worse than those given by D .

Lemma 2.4. If deg $D < 0$, then $\ell(D) = 0$.

Theorem 2.5 (Riemann-Roch). There is an integer $g = g_K \geq 0$ and a divisor C such that for any $A \in \text{Div}(K)$, we have

$$
\ell(A) = \deg A - g + 1 + \ell(C - A)
$$

The integer q is unique, called the genus of K. The divisor C is unique up to linear equivalence – any other C will differ by a principal divisor, such a C is called a *canonical* divisor.

Example 2.6. Let us compute the genus of $K = F(T)$. Let P_{∞} denote the prime at infinity, as in [Example 1.4.](#page-1-2) $L(nP_{\infty})$ is the set of polynomials in $F[T]$ of degree at most n. Indeed the conditions $v_q(f) \geq 0$ for all irreducible polynomials $g \in F[T]$ is equivalent to f being a polynomial, and $v_{\infty}(f) + n \geq 0$ is equivalent to deg $f \leq n$. Thus,

$$
n+1 = \ell(nP_{\infty}) = n - g + 1
$$

if *n* is sufficiently large. We conclude $g = 0$.

3 Extensions of Function Fields

Let K/F be a function field. Let L be a finite extension of K and E be the algebraic closure of F in L. L is then a function field with constant field E. If $E = F$, we say that L/K is a geometric extension.

In the rest of this section, we assume L/K be a finite separable geometric extension of function fields with perfect constant field F.

As in algebraic number theory, we can study ramification of primes in function fields.

Definition 3.1. Let \mathcal{O}_P be a prime in K with maximal ideal P and $\mathcal{O}_\mathfrak{P}$ be a prime in L with maximal ideal $\mathfrak P$. We say that $\mathfrak P$ lies above P if $\mathcal O_P = K \cap \mathcal O_{\mathfrak P}$ and $P = K \cap \mathfrak P$. In this case we write $\mathfrak{P} \mid P$. We define the *ramification index* to be the integer $e = e(\mathfrak{P}/P)$ such that $P\mathcal{O}_{\mathfrak{P}} = \mathfrak{P}^e$ and the *residue class degree* $f = f(\mathfrak{P}/P) = [\mathcal{O}_{\mathfrak{P}}/\mathfrak{P} : \mathcal{O}_P/P].$

Now we shall identify the prime $\mathfrak P$ lying above a given prime P. Let R be the integral closure of \mathcal{O}_P in L. If \mathfrak{P} lies above P, then $\mathcal{O}_P \subseteq \mathcal{O}_\mathfrak{P}$, so $R \subseteq \mathcal{O}_\mathfrak{P}$. Let $\mathfrak{p} = \mathfrak{P} \cap R$, which is a prime of R. If $x \in R \setminus \mathfrak{p}$, then $x^{-1} \in \mathcal{O}_{\mathfrak{P}}$. Thus $R_{\mathfrak{p}} \subseteq \mathcal{O}_{\mathfrak{P}}$ and so $R_{\mathfrak{p}} = \mathcal{O}_{\mathfrak{P}}$.

We have shown that primes in K lying above P correspond to primes of R lying above P. Thus if $PR = \mathfrak{p}_1^{e_1} \dots \mathfrak{p}_g^{e_g}$, then the primes lying above P are $\mathfrak{P}_i = \mathfrak{p}_i R_{\mathfrak{p}_i}$. The e_i are the ramification indices of P_i over P. Let $f_i = f(P_i/P)$.

Proposition 3.2. $\sum_{i=1}^{g} e_i f_i = [L:K]$.

Proof. See [\[Ser79,](#page-10-2) Ch. 1 $\S5$]

We can extend a divisor of K to a divisor of L: Define the homomorphism $i_{L/K}$: $Div(K) \to Div(L)$ by $i_{L/K}(P) = \sum_{\mathfrak{P} \mid P} e(\mathfrak{P}/P) \mathfrak{P}$ and extending linearly.

Proposition 3.3. Let $D \in \text{Div}(K)$. Then $\text{deg}_L(i_{L/K}(D)) = [L:K] \text{deg}_K D$.

Proof. It suffices to consider $D = P$ prime. If $\mathfrak{P} | P$, then

$$
\deg_L \mathfrak{P} = [\mathcal{O}_{\mathfrak{P}}/\mathfrak{P} : F] = [\mathcal{O}_{\mathfrak{P}}/\mathfrak{P} : \mathcal{O}_P/P][\mathcal{O}_P/P : F] = f(\mathcal{P}/P) \deg_K P
$$

Note we used that L/K is a geometric extension here. Thus

$$
\deg_L(i_{L/K}(P)) = \sum_{\mathfrak{P} | P} e(\mathfrak{P}/P) \deg_L \mathfrak{P} = \sum_{\mathfrak{P} | P} e(\mathfrak{P}/P) f(\mathfrak{P}/P) \deg_K P = [L:K] \deg_K P
$$

as required. ■

Proposition 3.4. Let $a \in K^{\times}$. Then $i_{L/K}(a) = (a)$.

Proof. We compute

$$
i_{L/K}(a) = i_{L/K} \left(\sum_P v_P(a) P \right) = \sum_P v_P(a) \sum_{\mathfrak{P} | P} e(\mathfrak{P}/P) \mathfrak{P}
$$

$$
= \sum_{\mathfrak{P}} v_P(a) e(\mathfrak{P}/P) \mathfrak{P} = \sum_{\mathfrak{P}} v_{\mathfrak{P}}(a) \mathfrak{P} = (a)
$$

Theorem 3.5 (Riemann-Hurwitz). We have

$$
2g_L - 2 \ge [L:K](2g_K - 2) + \sum_{\mathfrak{P}} (e(\mathfrak{P}/P) - 1) \deg_L \mathfrak{P}
$$

where the sum is over all primes $\mathfrak P$ of L.

The actual statement is more precise than this (see [\[Ros02,](#page-10-1) Theorem 7.16]), but this will suffice for our purposes. The proof of this goes by studying differentials on K and its pullback to L.

Corollary 3.6. $g_L \geq g_K$.

4 The ABC Conjecture

The ABC conjecture was born out of a discussion between Oesterlé and Masser [\[Oes88\]](#page-10-3) in 1985 in the context of Szpiro's conjecture. The ABC conjecture states the following:

Conjecture 4.1. For all $\varepsilon > 0$, there exists $C(\varepsilon) > 0$ such that

$$
\max(|a|, |b|, |c|) \le C(\varepsilon)(\text{rad}\,abc)^{1+\varepsilon} \tag{1}
$$

for all triples (a, b, c) of nonzero integers satisfying $a + b + c = 0$.

In the statement above, rad $n = \prod_{p|n} p$ is the product of all primes divisors of n. This conjecture implies Szpiro's conjecture, which in turn implies Fermat's last theorem for exponent N sufficiently large (see [\[Sil09,](#page-10-4) \S VIII.11]).

Let us reformulate the ABC conjecture as follows: Set $u = a/c$ and $v = b/c$. Recall the height of a rational number r/s with $(r, s) = 1$ is $ht(r/s) = log max(|r|, |s|)$. Taking logarithms on both sides of [\(1\)](#page-5-0), we get

$$
\max(\mathrm{ht}(u), \mathrm{ht}(v)) \le c(\varepsilon) + (1 + \varepsilon) \sum_{p \mid abc} \log p
$$

where $c(\varepsilon) = \log C(\varepsilon)$.

Let K be a function field over F. We have an analogue of height, namely for $u \in K \backslash F$, we can consider its *degree* deg $u = [K : F(u)]$. Actually we will instead consider the separable degree deg_s $u = [K : F(u)]_s$. The analogue of log p is the degree deg P. We now state the analogue of the ABC conjecture over function fields:

Theorem 4.2. Let K be a function field with perfect constant field F. Suppose $u, v \in K \backslash F$ and $u + v = 1$. Then

$$
\deg_s u = \deg_s v \le 2g_K - 2 + \sum_{P \in \text{Supp}(A+B+C)} \deg_K P
$$

where $A = (u)_0$, $B = (v)_0$, and $C = (u)_{\infty} = (v)_{\infty}$.

In the above, Supp D is the *support* of a divisor D. If $D = \sum_{P} n_{P}P$, then Supp $D =$ $\{P \mid n_P \neq 0\}$. We remark that the equality $\deg_s(u) = \deg_s(v)$ follows from the fact $F(u) = F(v)$. The equality $(u)_{\infty} = (v)_{\infty}$ follows from the fact that if $v_P(u) < 0$, then $v_P(1-u) = v_P(u)$. Note further that Supp A, Supp B, and Supp C are disjoint.

[Theorem 4.2](#page-5-1) (in the case where F is algebraically closed of characteristic 0) was already known to be true prior to [Conjecture 4.1](#page-5-2) (see [\[Mas83\]](#page-10-5)).

Proof of [Theorem 4.2](#page-5-1) (Sketch). Set $k = F(u)$ and assume that K/k is separable of degree n. Let $\mathfrak{p}_0, \mathfrak{p}_1, \mathfrak{p}_{\infty}$ be the (degree 1) primes in $F(u)$ that are the zero divisors of $u, 1-u$, and $1/u$ respectively. We have $A = i_{K/k}(\mathfrak{p}_0), B = i_{K/k}(\mathfrak{p}_1)$, and $C = i_{K/k}(\mathfrak{p}_{\infty})$ (see [Proposition 3.4\)](#page-4-0).

Recalling that $g_k = 0$ (see [Example 2.6\)](#page-3-0), Riemann-Hurwitz implies

$$
2g_K - 2 \ge -2n + \sum_P (e(P/\mathfrak{p}) - 1) \deg_K P \tag{2}
$$

where the sum is over all primes P in K , and $\mathfrak p$ is the prime in k below P . Instead of summing over all P we shall sum only over $P \in \text{Supp}(A+B+C)$. Noting that $P \in \text{Supp} A$ iff $P | \mathfrak{p}_0$, we have

$$
\sum_{P \in \text{Supp } A} (e(P/\mathfrak{p}) - 1) \deg_K P = \sum_{P \in \text{Supp } A} e(P/\mathfrak{p}_0) \deg_K P - \sum_{P \in \text{Supp } A} \deg_K P = i_{K/k}
$$

$$
= \deg_K(i_{K/k}\mathfrak{p}_0) - \sum_{P \in \text{Supp } A} \deg_K P
$$

$$
\stackrel{(3.3)}{=} n - \sum_{P \in \text{Supp } A} \deg_K P
$$
(3)

Similarly,

$$
\sum_{P \in \text{Supp } B} (e(P/\mathfrak{p}) - 1) \deg_K P = n - \sum_{P \in \text{Supp } B} \deg_K P
$$

and

$$
\sum_{P \in \text{Supp } C} (e(P/\mathfrak{p}) - 1) \deg_K P = n - \sum_{P \in \text{Supp } C} \deg_K P
$$

Adding these three inequalities gives

$$
\sum_{P \in \text{Supp}(A+B+C)} (e(P/\mathfrak{p})-1) \deg_K P = 3n - \sum_{P \in \text{Supp}(A+B+C)} \deg_K P
$$

Combining this with [\(2\)](#page-6-0), we get

$$
2g_K-2\geq n-\sum_{P\in \text{Supp}(A+B+C)}\deg_KP
$$

which gives the conclusion.

In case K/k is inseparable, let M be the maximal separable subextension of K/k . K/M is purely inseparable and one can show the following:

- 1. $g_M = g_K$,
- 2. For each prime P' of M, there is a unique prime P of K lying above it,
- 3. $\deg_K P = \deg_M P'$.

and use this to conclude. See [\[Ros02,](#page-10-1) Theorem 7.16] for details. ■

As a corollary, let us now prove an analogue of Fermat's last theorem for function fields:

Proposition 4.3. Let K be a function field with perfect constant field F. Let $N > 0$, not divisible by $p = \text{char } F$. If

- 1. $q_K = 0$ and $N \geq 3$; or
- 2. $q_K \geq 1$ and $N > 6q_K 3$,

then there are no non-constant solutions to $X^N + Y^N = 1$ in K.

Proof. Suppose we have a non-constant solution $(u, v) \in (K \setminus F)^2$. Then we apply [Theo](#page-5-1)[rem 4.2](#page-5-1) to (u^N, v^N) to get

$$
\deg_s u^N \le 2g_K - 2 + \sum_{P \in \text{Supp}(A+B+C)} \deg_K P
$$

Let M be the maximal separable subextension of $K/F(u)$. The extension $F(u)/F(u^N)$ is separable of degree N, since $p \nmid N$. Thus M is the maximal separable subextension of $K/F(u^{N}),$ so $\deg_{s} u^{N} = [M : F(u)][F(u) : F(u^{N})] = N \deg_{s} u.$

[Equation 3](#page-6-1) shows that

$$
\sum_{P \in \text{Supp } A} \deg_K P \le \deg_s u
$$

Thus,

$$
N \sum_{P \in \text{Supp } A} \deg_K P \le 2g_K - 2 + \sum_{P \in \text{Supp}(A+B+C)} \deg_K P
$$

We have similar inequalities for B and C in place of A . Summing these up,

$$
N \sum_{P \in \text{Supp}(A+B+C)} \deg_K P \leq 6g_K - 6 + 3 \sum_{P \in \text{Supp}(A+B+C)} \deg_K P
$$

so

$$
(N-3)\sum_{P \in \text{Supp}(A+B+C)} \deg_K P \le 6g_K - 6
$$

If $g_K = 0$, then we must have $N < 3$. If $g_K \ge 1$, then we must have $N - 3 \le 6g_K - 6$, so $N \leq 6g_K - 3.$

We remark that this is not the best possible bound N. If $(u, v) \in (K \setminus F)^2$ is a nonconstant solution, then it turns out that if $p \nmid N$, then $F(u, v)$ has genus $(N-1)(N-2)/2$. By Riemann-Hurwitz, we have $(N-1)(N-2)/2 \leq g_K$. Thus there are no non-constant solutions if $(N-1)(N-2)/2 > g_K$.

A Riemann Hypothesis for Function Fields

We now have the terminology to state the Riemann Hypothesis for function fields. Recall that if K is a number field, its Dedekind zeta function is

$$
\zeta_K(s) = \sum_{\mathfrak{a}} \frac{1}{(N\mathfrak{a})^s}
$$

where the sum is over all nonzero ideals \mathfrak{a} of \mathcal{O}_K and $N\mathfrak{a} = |\mathcal{O}_K/\mathfrak{a}|$ is the absolute norm of an ideal (see [\[Neu99,](#page-10-6) Ch. VII]). We define the zeta function for a global function field K over \mathbb{F}_q analogously:

$$
\zeta_K(s) = \sum_{A \ge 0} \frac{1}{(NA)^s}
$$

over effective divisors A, where $NA = q^{\deg A}$. This has an Euler product

$$
\zeta_K(s) = \prod_{P \text{ prime}} (1 - (NP)^{-s})^{-1}
$$

It admits a meromorphic continuation to $\mathbb C$ with simple poles at $s = 0$ and $s = 1$, and satisfies a functional equation.

Example A.1. If $K = \mathbb{F}_q(T)$, then $\zeta_K(s) = (1 - q^{-s})^{-1}(1 - q^{1-s})^{-1}$.

The zeta function is often given in a different form. From the Euler product,

$$
\zeta_K(s) = \prod_{d=1}^{\infty} (1 - q^{-ds})^{-a_d}
$$

where a_d is the number of primes of K of degree d. Set $u = q^{-s}$. The zeta function becomes

$$
Z_K(u) = \prod_{d=1}^{\infty} (1 - u^d)^{-a_d}
$$

Taking logarithms,

$$
\log Z_K(u) = \sum_{d=1}^{\infty} -a_d \log(1 - u^d) = \sum_{d=1}^{\infty} a_d \sum_{m=1}^{\infty} \frac{u^{dm}}{m} = \sum_{n=1}^{\infty} \left(\sum_{d|n} da_d \right) \frac{u^n}{n}
$$

Let $N_n = \sum_{d|n} da_d$, so that

$$
Z_K(u) = \exp\left(\sum_{n=1}^{\infty} N_n \frac{u^n}{n}\right)
$$

Theorem A.2. There is a polynomial $L_K(u) \in \mathbb{Z}[u]$ of degree 2g such that $L_K(0) = 1$, $L'_{K}(0) = a_{1} - q - 1$, and

$$
Z_K(u) = \frac{L_K(u)}{(1-u)(1-qu)}
$$

Factor $L_K(u) = \prod_{i=1}^{2g} (1 - \pi_i u).$

Theorem A.3 (Riemann Hypothesis). All the zeros of $\zeta_K(s)$ lie on the line Re $s = 1/2$. Equivalently, $|\pi_i| = \sqrt{q}$ for all i.

Corollary A.4. $|a_1 - q - 1| \leq 2g\sqrt{q}$.

Proof. $a_1 - q - 1 = L'_K(0) = -\pi_1 - \ldots - \pi_{2g}$, then take absolute values.

This has implications for counting points on curves over finite fields. Let C be a nonsingular curve over \mathbb{F}_q with function field K. We claim that $N_n = \#C(\mathbb{F}_{q^n})$. We have a bijection

$$
C(\mathbb{F}_{q^n}) \longleftrightarrow \{ (P \in C, \mathbb{F}_{q}\text{-homomorphism } \mathcal{O}_P/P \to \mathbb{F}_{q^n}) \}
$$

(see e.g. [\[SP,](#page-10-7) [Tag 01J5\]](https://stacks.math.columbia.edu/tag/01J5)). Since $\mathcal{O}_P/P \cong \mathbb{F}_{q^{\deg P}}$, there is a homomorphism $\mathcal{O}_P/P \to \mathbb{F}_{q^n}$ iff deg P | n. In this case there are exactly deg P such \mathbb{F}_q -homomorphisms. This establishes the claim. We conclude that

$$
Z_K(u) = \exp\left(\sum_{n=1}^{\infty} \#C(\mathbb{F}_{q^n})\frac{u^n}{n}\right)
$$

If C is an elliptic curve, then $g = 1$ and $a_1 = \#C(\mathbb{F}_q)$. [Corollary A.4](#page-9-0) then gives Hasse's theorem.

References

- [Har77] Robin Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics 52. Springer, 1977.
- [Lor96] Dino Lorenzini. An Invitation to Arithmetic Geometry. Graduate Studies in Mathematics. American Mathematical Society, 1996.
- [Mas83] R. C. Mason. "The hyperelliptic equation over function fields". In: Mathematical Proceedings of the Cambridge Philosophical Society 93.2 (1983), pp. 219–230.
- [Neu99] Jürgen Neukirch. Algebraic Number Theory. Grundlehren der mathematischen Wissenschaften 322. Springer, 1999.
- [Oes88] Joseph Oesterlé. "Nouvelles approches du "théoreme" de Fermat". In: Astérisque 161.162 (1988), pp. 165–186.
- [Ros02] Michael Rosen. Number Theory in Function Fields. Graduate Texts in Mathematics 210. Springer, 2002.
- [Ser79] Jean-Pierre Serre. Local Fields. Graduate Texts in Mathematics 67. Springer, 1979.
- [Sil09] Joseph H. Silverman. The Arithmetic of Elliptic Curves. 2nd ed. Graduate Texts in Mathematics 106. Springer, 2009.
- [SP] The Stacks project authors. The Stacks project. [https://stacks.math.columbia](https://stacks.math.columbia.edu). [edu](https://stacks.math.columbia.edu). 2024.