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1 Introduction

In number theory, we often work over the ring Z, its field of fractions, or a number field,
i.e. a finite field extension K/Q. The ring Z shares many properties in common with the
ring of polynomials over a finite field Fq[T ]. For instance:

• they are both Euclidean domains, hence are PIDs, UFDs, and Dedekind domains;

• they have countably many primes;

• they have finite groups of units;

• any quotient by a non-zero ideal is finite.

One of the most basic questions one can ask in number theory is the solutions to
Diophantine equations, among the most famous is

xN + yN = zN

where N ≥ 3 and x, y, z ∈ Z. Fermat’s last theorem asserts that this has no non-trivial
solutions. One can ask the same question over Fq[T ], and indeed we will see that the
analogue of Fermat’s last theorem is true in this setting.

The analogue of a number field over Fq[T ] is a global function field, it is simply a finite
extension of Fq(T ). More generally, a function field over F is a finite extension K of F (T ).
We will assume F is algebraically closed in K, in this case we call F the constant field.

Recall that for a number fieldK, non-archimedian valuations ofK correspond to primes
of its ring of integers OK . In other words:

Proposition 1.1. We have a correspondence

{primes in OK} ←→ {DVRs R ⊆ K with Frac(R) = K}
p 7−→ (OK)p
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Proof. Let R be a DVR in K with maximal ideal P . R contains Z and is integrally closed
in K, hence OK ⊆ R. p = P ∩ OK is a prime1 of OK . If x ∈ OK \ p, then x /∈ P , so
x−1 ∈ R. This shows that (OK)p ⊆ R. Finally, (OK)p is a DVR, and DVRs are maximal
subrings inside their fields of fractions, so R = (OK)p. ■

This motivates the following definition:

Definition 1.2. Let K/F be a function field. A prime in K is a DVR R with maximal
ideal P such that F ⊆ R ⊆ K and Frac(R) = K. We will often refer to prime by its
maximal ideal P . We let vP : K× → Z denote the corresponding valuation. The degree of
a prime P is degP = [R/P : F ].

Lemma 1.3. degP is finite.

Proof. Pick y ∈ P \ F . We will show [R/P : F ] ≤ [K : F (y)]. Suppose u1, . . . , um ∈ R are
such that their reductions modulo P , u1, . . . , un are linearly independent over F . We will
show u1, . . . , um are linearly independent over F (y). Suppose not, then we have polynomials
fi ∈ F [y] such that f1u1 + . . .+ fmum = 0. We may assume that y does not divide all fi,
so reducing this modulo P gives a linear relation between the ui, contradiction. ■

Example 1.4. Let’s find the primes of K = F (T ). Suppose R is a prime in K, v the
corresponding valuation.

Case 1: Suppose v(f) ≥ 0 for all f ∈ F [T ]. Pick an irreducible f such that v(f) > 0.
If g ∈ F [T ] is not divisible by f , then af + bg = 1 for some a, b ∈ F [T ]. Then v(bg) =
v(1 − af) = 0, so v(g) = 0. We get that v is the f -adic valuation, denoted vf , and
R = F [T ](f).

Case 2: There is an irreducible f ∈ F [T ] with v(f) < 0. Write f(T ) = anT
n + . . . +

a1T + a0 where ai ∈ F . From this we see that v(T ) < 0. We may assume v(T ) = −1, thus
for g ∈ F [T ], v(g) = −deg g, and R = F [T−1](T−1). We write v∞ = v.

In case 1 above, the degree of the prime is the dimension of F [T ](f)/(f)F [T ](f) ∼=
F [T ]/(f) over F , which is the degree of the polynomial f . These primes also correspond
to the points on an affine piece of P1

F . The prime in case 2 corresponds to the point at
infinity. Note that K is the function field of P1

F .

In general, one may associate to a function field K/F a nonsingular complete2 curve C
over F such that K is the function field of C. See [Har77, §1.6] for details.

Example 1.5. Let E : y2 = f(x) be an elliptic curve over F . Then its function field is

K = Frac
F [x, y]

(y2 − f(x))
1p is nonzero: We have Q ̸⊆ R as the integral closure of Q in K is K. Thus there is an integer prime p

such that 1/p /∈ R, so p ∈ Z ∩ P ⊆ p.
2proper over F
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2 Divisors

In this section we will introduce divisors, which play a similar role to fractional ideals in
number fields. We give the definitions necessary to state the Riemann-Roch theorem for
function fields.

Let K/F be a function field.

Definition 2.1. A divisor of K is a formal linear combination D =
∑

P nPP of primes P
in K. The group of divisors of K is the abelian group of such divisors, denoted Div(K).
We say D is effective if all nP ≥ 0, and denote this by D ≥ 0.

To each a ∈ K×, we may associate a divisor

(a) =
∑
P

vP (a)P

It turns out that there are only finitely many P such that vP (a) ̸= 0, so this is a well-defined
divisor (see [Ros02, Proposition 5.1]). We thus have a homomorphism (·) : K× → Div(K),
an element of its image is called a principal divisor.

We also define

(a)0 =
∑

vP (a)>0

vP (a)P and (a)∞ =
∑

vP (a)<0

−vP (a)P

called the zero divisor and polar divisor of a respectively. Thus divisors allow us to keep
track of zeros and poles of functions. We define the degree of a divisor by extending deg
linearly:

deg

∑
P

nPP

 =
∑
P

nP degP

giving a homomorphism deg : Div(K)→ Z.

Proposition 2.2. For a ∈ K×, we have

1. deg(a)0 = deg(a)∞ = [K : F (a)],

2. deg(a) = 0,

3. (a) = 0 iff a ∈ F×

Proof. See [Ros02, Proposition 5.1]. Note that a ∈ F× implies (a) = 0 is trivial since we
ask that F ⊆ P for primes P . ■

Definition 2.3. To each D ∈ Div(K) we associate an F -vector space

L(D) = {x ∈ K× | (x) +D ≥ 0} ∪ {0}

called the Riemann-Roch space. Its dimension over F is finite, denoted by ℓ(D).
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We can interpret L(D) as the space of functions with poles no worse than those given
by D.

Lemma 2.4. If degD < 0, then ℓ(D) = 0.

Theorem 2.5 (Riemann-Roch). There is an integer g = gK ≥ 0 and a divisor C such that
for any A ∈ Div(K), we have

ℓ(A) = degA− g + 1 + ℓ(C −A)

The integer g is unique, called the genus of K. The divisor C is unique up to linear
equivalence – any other C will differ by a principal divisor, such a C is called a canonical
divisor.

Example 2.6. Let us compute the genus of K = F (T ). Let P∞ denote the prime at
infinity, as in Example 1.4. L(nP∞) is the set of polynomials in F [T ] of degree at most n.
Indeed the conditions vg(f) ≥ 0 for all irreducible polynomials g ∈ F [T ] is equivalent to f
being a polynomial, and v∞(f) + n ≥ 0 is equivalent to deg f ≤ n. Thus,

n+ 1 = ℓ(nP∞) = n− g + 1

if n is sufficiently large. We conclude g = 0.

3 Extensions of Function Fields

Let K/F be a function field. Let L be a finite extension of K and E be the algebraic
closure of F in L. L is then a function field with constant field E. If E = F , we say that
L/K is a geometric extension.

In the rest of this section, we assume L/K be a finite separable geometric extension of
function fields with perfect constant field F .

As in algebraic number theory, we can study ramification of primes in function fields.

Definition 3.1. Let OP be a prime in K with maximal ideal P and OP be a prime in L
with maximal ideal P. We say that P lies above P if OP = K ∩ OP and P = K ∩P. In
this case we write P | P . We define the ramification index to be the integer e = e(P/P )
such that POP = Pe and the residue class degree f = f(P/P ) = [OP/P : OP /P ].

Now we shall identify the prime P lying above a given prime P . Let R be the integral
closure of OP in L. If P lies above P , then OP ⊆ OP, so R ⊆ OP. Let p = P ∩R, which
is a prime of R. If x ∈ R \ p, then x−1 ∈ OP. Thus Rp ⊆ OP and so Rp = OP.

We have shown that primes in K lying above P correspond to primes of R lying above
P . Thus if PR = pe11 . . . p

eg
g , then the primes lying above P are Pi = piRpi . The ei are the

ramification indices of Pi over P . Let fi = f(Pi/P ).
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Proposition 3.2.
∑g

i=1 eifi = [L : K].

Proof. See [Ser79, Ch. 1 §5] ■

We can extend a divisor of K to a divisor of L: Define the homomorphism iL/K :

Div(K)→ Div(L) by iL/K(P ) =
∑

P|P e(P/P )P and extending linearly.

Proposition 3.3. Let D ∈ Div(K). Then degL(iL/K(D)) = [L : K] degK D.

Proof. It suffices to consider D = P prime. If P | P , then

degLP = [OP/P : F ] = [OP/P : OP /P ][OP /P : F ] = f(P/P ) degK P

Note we used that L/K is a geometric extension here. Thus

degL(iL/K(P )) =
∑
P|P

e(P/P ) degLP =
∑
P|P

e(P/P )f(P/P ) degK P = [L : K] degK P

as required. ■

Proposition 3.4. Let a ∈ K×. Then iL/K(a) = (a).

Proof. We compute

iL/K(a) = iL/K

∑
P

vP (a)P

 =
∑
P

vP (a)
∑
P|P

e(P/P )P

=
∑
P

vP (a)e(P/P )P =
∑
P

vP(a)P = (a) ■

Theorem 3.5 (Riemann-Hurwitz). We have

2gL − 2 ≥ [L : K](2gK − 2) +
∑
P

(e(P/P )− 1) degLP

where the sum is over all primes P of L.

The actual statement is more precise than this (see [Ros02, Theorem 7.16]), but this
will suffice for our purposes. The proof of this goes by studying differentials on K and its
pullback to L.

Corollary 3.6. gL ≥ gK .

5



4 The ABC Conjecture

The ABC conjecture was born out of a discussion between Oesterlé and Masser [Oes88] in
1985 in the context of Szpiro’s conjecture. The ABC conjecture states the following:

Conjecture 4.1. For all ε > 0, there exists C(ε) > 0 such that

max(|a| ,|b| ,|c|) ≤ C(ε)(rad abc)1+ε (1)

for all triples (a, b, c) of nonzero integers satisfying a+ b+ c = 0.

In the statement above, radn =
∏

p|n p is the product of all primes divisors of n. This
conjecture implies Szpiro’s conjecture, which in turn implies Fermat’s last theorem for
exponent N sufficiently large (see [Sil09, §VIII.11]).

Let us reformulate the ABC conjecture as follows: Set u = a/c and v = b/c. Recall
the height of a rational number r/s with (r, s) = 1 is ht(r/s) = logmax(|r| ,|s|). Taking
logarithms on both sides of (1), we get

max(ht(u),ht(v)) ≤ c(ε) + (1 + ε)
∑
p|abc

log p

where c(ε) = logC(ε).
Let K be a function field over F . We have an analogue of height, namely for u ∈ K \F ,

we can consider its degree deg u = [K : F (u)]. Actually we will instead consider the
separable degree degs u = [K : F (u)]s. The analogue of log p is the degree degP . We now
state the analogue of the ABC conjecture over function fields:

Theorem 4.2. Let K be a function field with perfect constant field F . Suppose u, v ∈ K\F
and u+ v = 1. Then

degs u = degs v ≤ 2gK − 2 +
∑

P∈Supp(A+B+C)

degK P

where A = (u)0, B = (v)0, and C = (u)∞ = (v)∞.

In the above, SuppD is the support of a divisor D. If D =
∑

P nPP , then SuppD =
{P | nP ̸= 0}. We remark that the equality degs(u) = degs(v) follows from the fact
F (u) = F (v). The equality (u)∞ = (v)∞ follows from the fact that if vP (u) < 0, then
vP (1− u) = vP (u). Note further that SuppA, SuppB, and SuppC are disjoint.

Theorem 4.2 (in the case where F is algebraically closed of characteristic 0) was already
known to be true prior to Conjecture 4.1 (see [Mas83]).

Proof of Theorem 4.2 (Sketch). Set k = F (u) and assume that K/k is separable of degree
n. Let p0, p1, p∞ be the (degree 1) primes in F (u) that are the zero divisors of u, 1 − u,
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and 1/u respectively. We have A = iK/k(p0), B = iK/k(p1), and C = iK/k(p∞) (see
Proposition 3.4).

Recalling that gk = 0 (see Example 2.6), Riemann-Hurwitz implies

2gK − 2 ≥ −2n+
∑
P

(e(P/p)− 1) degK P (2)

where the sum is over all primes P in K, and p is the prime in k below P . Instead of
summing over all P we shall sum only over P ∈ Supp(A+B+C). Noting that P ∈ SuppA
iff P | p0, we have∑

P∈SuppA

(e(P/p)− 1) degK P =
∑

P∈SuppA

e(P/p0) degK P −
∑

P∈SuppA

degK P = iK/k

= degK(iK/kp0)−
∑

P∈SuppA

degK P

(3.3)
= n−

∑
P∈SuppA

degK P (3)

Similarly, ∑
P∈SuppB

(e(P/p)− 1) degK P = n−
∑

P∈SuppB

degK P

and ∑
P∈SuppC

(e(P/p)− 1) degK P = n−
∑

P∈SuppC

degK P

Adding these three inequalities gives∑
P∈Supp(A+B+C)

(e(P/p)− 1) degK P = 3n−
∑

P∈Supp(A+B+C)

degK P

Combining this with (2), we get

2gK − 2 ≥ n−
∑

P∈Supp(A+B+C)

degK P

which gives the conclusion.
In case K/k is inseparable, let M be the maximal separable subextension of K/k. K/M

is purely inseparable and one can show the following:

1. gM = gK ,

2. For each prime P ′ of M , there is a unique prime P of K lying above it,

3. degK P = degM P ′.
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and use this to conclude. See [Ros02, Theorem 7.16] for details. ■

As a corollary, let us now prove an analogue of Fermat’s last theorem for function fields:

Proposition 4.3. Let K be a function field with perfect constant field F . Let N > 0, not
divisible by p = charF . If

1. gK = 0 and N ≥ 3; or

2. gK ≥ 1 and N > 6gK − 3,

then there are no non-constant solutions to XN + Y N = 1 in K.

Proof. Suppose we have a non-constant solution (u, v) ∈ (K \ F )2. Then we apply Theo-
rem 4.2 to (uN , vN ) to get

degs u
N ≤ 2gK − 2 +

∑
P∈Supp(A+B+C)

degK P

Let M be the maximal separable subextension of K/F (u). The extension F (u)/F (uN )
is separable of degree N , since p ∤ N . Thus M is the maximal separable subextension of
K/F (uN ), so degs u

N = [M : F (u)][F (u) : F (uN )] = N degs u.
Equation 3 shows that ∑

P∈SuppA

degK P ≤ degs u

Thus,

N
∑

P∈SuppA

degK P ≤ 2gK − 2 +
∑

P∈Supp(A+B+C)

degK P

We have similar inequalities for B and C in place of A. Summing these up,

N
∑

P∈Supp(A+B+C)

degK P ≤ 6gK − 6 + 3
∑

P∈Supp(A+B+C)

degK P

so
(N − 3)

∑
P∈Supp(A+B+C)

degK P ≤ 6gK − 6

If gK = 0, then we must have N < 3. If gK ≥ 1, then we must have N − 3 ≤ 6gK − 6, so
N ≤ 6gK − 3. ■

We remark that this is not the best possible bound N . If (u, v) ∈ (K \ F )2 is a non-
constant solution, then it turns out that if p ∤ N , then F (u, v) has genus (N −1)(N −2)/2.
By Riemann-Hurwitz, we have (N − 1)(N − 2)/2 ≤ gK . Thus there are no non-constant
solutions if (N − 1)(N − 2)/2 > gK .
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A Riemann Hypothesis for Function Fields

We now have the terminology to state the Riemann Hypothesis for function fields. Recall
that if K is a number field, its Dedekind zeta function is

ζK(s) =
∑
a

1

(Na)s

where the sum is over all nonzero ideals a of OK and Na =
∣∣OK/a

∣∣ is the absolute norm
of an ideal (see [Neu99, Ch. VII]). We define the zeta function for a global function field
K over Fq analogously:

ζK(s) =
∑
A≥0

1

(NA)s

over effective divisors A, where NA = qdegA. This has an Euler product

ζK(s) =
∏

P prime

(1− (NP )−s)−1

It admits a meromorphic continuation to C with simple poles at s = 0 and s = 1, and
satisfies a functional equation.

Example A.1. If K = Fq(T ), then ζK(s) = (1− q−s)−1(1− q1−s)−1.

The zeta function is often given in a different form. From the Euler product,

ζK(s) =
∞∏
d=1

(1− q−ds)−ad

where ad is the number of primes of K of degree d. Set u = q−s. The zeta function becomes

ZK(u) =

∞∏
d=1

(1− ud)−ad

Taking logarithms,

logZK(u) =

∞∑
d=1

−ad log(1− ud) =

∞∑
d=1

ad

∞∑
m=1

udm

m
=

∞∑
n=1

∑
d|n

dad

 un

n

Let Nn =
∑

d|n dad, so that

ZK(u) = exp

 ∞∑
n=1

Nn
un

n


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Theorem A.2. There is a polynomial LK(u) ∈ Z[u] of degree 2g such that LK(0) = 1,
L′
K(0) = a1 − q − 1, and

ZK(u) =
LK(u)

(1− u)(1− qu)

Factor LK(u) =
∏2g

i=1(1− πiu).

Theorem A.3 (Riemann Hypothesis). All the zeros of ζK(s) lie on the line Re s = 1/2.
Equivalently, |πi| =

√
q for all i.

Corollary A.4. |a1 − q − 1| ≤ 2g
√
q.

Proof. a1 − q − 1 = L′
K(0) = −π1 − . . .− π2g, then take absolute values. ■

This has implications for counting points on curves over finite fields. Let C be a
nonsingular curve over Fq with function field K. We claim that Nn = #C(Fqn). We have
a bijection

C(Fqn)←→ {(P ∈ C,Fq-homomorphism OP /P → Fqn)}

(see e.g. [SP, Tag 01J5]). Since OP /P ∼= FqdegP , there is a homomorphism OP /P → Fqn iff
degP | n. In this case there are exactly degP such Fq-homomorphisms. This establishes
the claim. We conclude that

ZK(u) = exp

 ∞∑
n=1

#C(Fqn)
un

n


If C is an elliptic curve, then g = 1 and a1 = #C(Fq). Corollary A.4 then gives Hasse’s
theorem.
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