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1 Introduction

In number theory, we often work over the ring Z, its field of fractions, or a number field,
i.e. a finite field extension K/Q. The ring Z shares many properties in common with the
ring of polynomials over a finite field F,[T’]. For instance:

e they are both Euclidean domains, hence are PIDs, UFDs, and Dedekind domains;
e they have countably many primes;

e they have finite groups of units;

e any quotient by a non-zero ideal is finite.

One of the most basic questions one can ask in number theory is the solutions to
Diophantine equations, among the most famous is

e p N =N

where N > 3 and z,y,z € Z. Fermat’s last theorem asserts that this has no non-trivial
solutions. Omne can ask the same question over F,[T], and indeed we will see that the
analogue of Fermat’s last theorem is true in this setting.

The analogue of a number field over Fy[T] is a global function field, it is simply a finite
extension of Fy(T"). More generally, a function field over F is a finite extension K of F/(T').
We will assume F' is algebraically closed in K, in this case we call F' the constant field.

Recall that for a number field K, non-archimedian valuations of K correspond to primes
of its ring of integers O . In other words:

Proposition 1.1. We have a correspondence

{primes in O} <+— {DVRs RC K with Frac(R) = K}
p — (Ok)y



Proof. Let R be a DVR in K with maximal ideal P. R contains Z and is integrally closed
in K, hence Ox C R. p = PN O is a prime! of Og. If x € Ok \ p, then = ¢ P, so
z~! € R. This shows that (Ok), C R. Finally, (Ok), is a DVR, and DVRs are maximal
subrings inside their fields of fractions, so R = (Ok),. ]

This motivates the following definition:

Definition 1.2. Let K/F be a function field. A prime in K is a DVR R with maximal
ideal P such that F' C R C K and Frac(R) = K. We will often refer to prime by its
maximal ideal P. We let vp : K* — Z denote the corresponding valuation. The degree of
a prime P is deg P = [R/P : F].

Lemma 1.3. deg P is finite.

Proof. Pick y € P\ F. We will show [R/P : F] < [K : F(y)]. Suppose u1,...,u, € R are
such that their reductions modulo P, uy,...,u, are linearly independent over F'. We will
show uq, ..., uy, are linearly independent over F'(y). Suppose not, then we have polynomials
fi € Fly] such that fiui + ...+ fiyum = 0. We may assume that y does not divide all f;,
so reducing this modulo P gives a linear relation between the u;, contradiction. ]

Example 1.4. Let’s find the primes of K = F(T'). Suppose R is a prime in K, v the
corresponding valuation.

Case 1: Suppose v(f) > 0 for all f € F[T]. Pick an irreducible f such that v(f) > 0.
If g € F[T] is not divisible by f, then af + bg = 1 for some a,b € F[T]. Then v(bg) =
v(l —af) =0, so v(g) = 0. We get that v is the f-adic valuation, denoted vy, and
R = F[T]-

Case 2: There is an irreducible f € F[T] with v(f) < 0. Write f(T) = a,T" + ... +
a1T + ag where a; € F. From this we see that v(T) < 0. We may assume v(T") = —1, thus
for g € F[T], v(g) = —degyg, and R = F[T~](7-1). We write v = v.

In case 1 above, the degree of the prime is the dimension of F[T] s /(f)F[T] ) =
F[T)/(f) over F, which is the degree of the polynomial f. These primes also correspond
to the points on an affine piece of IP’};. The prime in case 2 corresponds to the point at
infinity. Note that K is the function field of ]P’llp.

In general, one may associate to a function field K/F a nonsingular complete? curve C
over I such that K is the function field of C. See [Har77, §1.6] for details.

Example 1.5. Let £ : y?> = f(z) be an elliptic curve over F. Then its function field is

Flz,y]
(y* — f(2))
p is nonzero: We have Q Z R as the integral closure of Q in K is K. Thus there is an integer prime p

such that 1/p ¢ R,sop € ZNP C p.
proper over F'

K = Frac




2 Divisors

In this section we will introduce divisors, which play a similar role to fractional ideals in
number fields. We give the definitions necessary to state the Riemann-Roch theorem for
function fields.

Let K/F be a function field.

Definition 2.1. A divisor of K is a formal linear combination D = ), npP of primes P
in K. The group of divisors of K is the abelian group of such divisors, denoted Div(K).
We say D is effective if all np > 0, and denote this by D > 0.

To each a € K*, we may associate a divisor

(a) =) vp(a)P

P

It turns out that there are only finitely many P such that vp(a) # 0, so this is a well-defined
divisor (see [Ros02, Proposition 5.1]). We thus have a homomorphism (-) : K* — Div(K),
an element of its image is called a principal divisor.

We also define

(a)o = Z vp(a)P and (@)oo = Z —vp(a)P

vp(a)>0 vp(a)<0

called the zero divisor and polar divisor of a respectively. Thus divisors allow us to keep
track of zeros and poles of functions. We define the degree of a divisor by extending deg
linearly:

deg anP = andegP
P P

giving a homomorphism deg : Div(K) — Z.
Proposition 2.2. For a € K*, we have

1. deg(a)o = deg(a)oo = [K : F(a)],

2. deg(a) =0,

3. (a) =0 iffac F*

Proof. See [Ros02, Proposition 5.1]. Note that a € F* implies (a) = 0 is trivial since we
ask that /' C P for primes P. |

Definition 2.3. To each D € Div(K) we associate an F-vector space
L(D)={xz e K* | (z)+ D >0} U{0}

called the Riemann-Roch space. Its dimension over F' is finite, denoted by ¢(D).



We can interpret L(D) as the space of functions with poles no worse than those given
by D.

Lemma 2.4. Ifdeg D < 0, then {(D) = 0.

Theorem 2.5 (Riemann-Roch). There is an integer g = gk > 0 and a divisor C' such that
for any A € Div(K), we have

l(A)=degA—g+1+¢C—A)

The integer g is unique, called the genus of K. The divisor C' is unique up to linear
equivalence — any other C' will differ by a principal divisor, such a C is called a canonical
divisor.

Example 2.6. Let us compute the genus of K = F(T). Let Py denote the prime at
infinity, as in Example 1.4. L(nPx) is the set of polynomials in F[T] of degree at most n.
Indeed the conditions v,(f) > 0 for all irreducible polynomials g € F[T] is equivalent to f
being a polynomial, and v (f) +n > 0 is equivalent to deg f < n. Thus,

n+1=4(nPx)=n—g+1

if n is sufficiently large. We conclude g = 0.

3 Extensions of Function Fields

Let K/F be a function field. Let L be a finite extension of K and E be the algebraic
closure of F'in L. L is then a function field with constant field E. If E = F, we say that
L/K is a geometric extension.

In the rest of this section, we assume L/K be a finite separable geometric extension of
function fields with perfect constant field F'.

As in algebraic number theory, we can study ramification of primes in function fields.

Definition 3.1. Let Op be a prime in K with maximal ideal P and Oy be a prime in L
with maximal ideal B. We say that P lies above P if Op = KNOp and P = KN*P. In
this case we write B | P. We define the ramification index to be the integer e = e(3/P)
such that POy = P and the residue class degree f = f(B/P) = [Op/B : Op/P].

Now we shall identify the prime 3 lying above a given prime P. Let R be the integral
closure of Op in L. If °B lies above P, then Op C Oy, so R C Og. Let p =B N R, which
is a prime of R. If z € R\ p, then 27! € Ogp. Thus Ry, € Ogp and so Ry = Ogp.

We have shown that primes in K lying above P correspond to primes of R lying above
P. Thus if PR = p7* .. .pg’, then the primes lying above P are P; = piRy,. The e; are the
ramification indices of P; over P. Let f; = f(P;/P).



Proposition 3.2. >7 ¢ f; = [L: K].
Proof. See [Ser79, Ch. 1 §5] |

We can extend a divisor of K to a divisor of L: Define the homomorphism i, x :
Div(K) — Div(L) by ir;k(P) = > qp €(B/P)P and extending linearly.

Proposition 3.3. Let D € Div(K). Then degy (i k(D)) = [L : K]degg D.

Proof. Tt suffices to consider D = P prime. If 3 | P, then

degy, B = [Op/PB : F| = [Og/P : Op/P|[Op/P : F] = f(P/P)deg P
Note we used that L/K is a geometric extension here. Thus
degy (ir/ic(P)) = Y e(B/P)deg, B =Y _e(F/P)f(P/P)degy P =L : K]degy P
BIP B|P
as required. [
Proposition 3.4. Let a € K*. Then ip;i(a) = (a).

Proof. We compute

inyi(a) =ik | D vp(@)P | = vp(a) Y e(B/P)P

P P B P

= vp(@)e(B/P)P = v(a)F = (a) .
B B

Theorem 3.5 (Riemann-Hurwitz). We have

29, —2 > [L: K|(2gx —2) + > _(e(P/P) — 1) deg P
B

where the sum is over all primes B of L.

The actual statement is more precise than this (see [Ros02, Theorem 7.16]), but this
will suffice for our purposes. The proof of this goes by studying differentials on K and its
pullback to L.

Corollary 3.6. g1, > gx.



4 The ABC Conjecture

The ABC conjecture was born out of a discussion between Oesterlé and Masser [Oes88] in
1985 in the context of Szpiro’s conjecture. The ABC conjecture states the following:

Conjecture 4.1. For all € > 0, there exists C(e) > 0 such that
max(al [b] Je]) < C(e) (rad abe) 1)
for all triples (a,b,c) of nonzero integers satisfying a + b+ ¢ = 0.

In the statement above, radn = Hp|n p is the product of all primes divisors of n. This

conjecture implies Szpiro’s conjecture, which in turn implies Fermat’s last theorem for
exponent N sufficiently large (see [Sil09, §VIIL.11]).

Let us reformulate the ABC conjecture as follows: Set u = a/c and v = b/c. Recall
the height of a rational number r/s with (r,s) = 1 is ht(r/s) = log max(r|,|s|). Taking
logarithms on both sides of (1), we get

max(ht(u), ht(v)) < ¢(e) + (1 +¢) Y _ logp
plabe

where ¢(e) = log C(e).

Let K be a function field over F. We have an analogue of height, namely for u € K\ F,
we can consider its degree degu = [K : F(u)]. Actually we will instead consider the
separable degree deg,u = [K : F(u)]s. The analogue of logp is the degree deg P. We now
state the analogue of the ABC conjecture over function fields:

Theorem 4.2. Let K be a function field with perfect constant field F'. Suppose u,v € K\ F
and u+v=1. Then

deg,u =deg, v <29 — 2+ Z degy P
PeSupp(A+B+C)

where A = (u)o, B = (v)g, and C = (4)so = (V)oo-

In the above, Supp D is the support of a divisor D. If D =) ,npP, then Supp D =
{P | np # 0}. We remark that the equality deg,(u) = deg,(v) follows from the fact
F(u) = F(v). The equality (¢)eo = (v)oo follows from the fact that if vp(u) < 0, then
vp(l —u) = vp(u). Note further that Supp A, Supp B, and Supp C' are disjoint.

Theorem 4.2 (in the case where F' is algebraically closed of characteristic 0) was already
known to be true prior to Conjecture 4.1 (see [Mas83]).

Proof of Theorem 4.2 (Sketch). Set k = F(u) and assume that K /k is separable of degree
n. Let po, p1, Poo be the (degree 1) primes in F(u) that are the zero divisors of u, 1 — u,



and 1/u respectively. We have A = ig/(po), B = ig/k(p1), and C = ig/(po) (see
Proposition 3.4).
Recalling that g = 0 (see Example 2.6), Riemann-Hurwitz implies

29K —2 > —2n+ Y (e(P/p) — 1) degy P (2)
P

where the sum is over all primes P in K, and p is the prime in k£ below P. Instead of
summing over all P we shall sum only over P € Supp(A+ B+ C). Noting that P € Supp A
iff P | po, we have

> (e(P/p)—1)degg P= > e(P/po)degg P— Y degg P=igy

PeSupp A PeSupp A PeSupp A
= deg (ir/kPo) — Z degg P
PeSupp A
3.3
33, _ Z degy P (3)
PeSupp A
Similarly,

> (e(P/p)—1)degg P=n— >  deggP

PeSupp B PeSupp B

and

Z (e(P/p) —1)deg P =n — Z degy P

PeSuppC PeSuppC

Adding these three inequalities gives

Z (e(P/p) —1)degy P =3n — Z degy P

PeSupp(A+B+C) PeSupp(A+B+C)

Combining this with (2), we get

29k —22n— Z degy P
PeSupp(A+B+C)

which gives the conclusion.
In case K/k is inseparable, let M be the maximal separable subextension of K /k. K /M
is purely inseparable and one can show the following:

L. gm = 9k,
2. For each prime P’ of M, there is a unique prime P of K lying above it,

3. degy P = degy, P’



and use this to conclude. See [Ros02, Theorem 7.16] for details. [
As a corollary, let us now prove an analogue of Fermat’s last theorem for function fields:

Proposition 4.3. Let K be a function field with perfect constant field F'. Let N > 0, not
divisible by p = char F'. If

1. gk =0 and N > 3; or
2. gk > 1 and N > 6gx — 3,
then there are no non-constant solutions to X + YN =1 in K.

Proof. Suppose we have a non-constant solution (u,v) € (K \ F)2. Then we apply Theo-
rem 4.2 to (uV,vV) to get

degSuN <29 —2+ Z deg; P
PeSupp(A+B+C)

Let M be the maximal separable subextension of K/F(u). The extension F(u)/F(u')
is separable of degree N, since p 4 N. Thus M is the maximal separable subextension of
K/Fu"), so deg, u™ = [M : F(u)][F(u) : F(u"V)] = N deg, u.
Equation 3 shows that
Z degr P < deg,u
PeSupp A
Thus,
N Y degg P <2gx—2+ > degy P
PeSupp A PeSupp(A+B+C)

We have similar inequalities for B and C in place of A. Summing these up,

N Z degy P < 6gx —6+3 Z degy P
PeSupp(A+B+C) PeSupp(A+B+C)

SO

(N —3) > deg;c P < 6gx — 6
PeSupp(A+B+C)

If gk = 0, then we must have N < 3. If g > 1, then we must have N — 3 < 6gg — 6, so
N < 6gx — 3. [ ]

We remark that this is not the best possible bound N. If (u,v) € (K \ F)? is a non-
constant solution, then it turns out that if p { N, then F'(u,v) has genus (N —1)(N —2)/2.
By Riemann-Hurwitz, we have (N — 1)(N —2)/2 < gx. Thus there are no non-constant
solutions if (N —1)(N —2)/2 > gk.



A Riemann Hypothesis for Function Fields

We now have the terminology to state the Riemann Hypothesis for function fields. Recall
that if K is a number field, its Dedekind zeta function is

1
Crels) = Z (Na)s

a

where the sum is over all nonzero ideals a of O and Na = ‘(’)K / a‘ is the absolute norm
of an ideal (see [Neu99, Ch. VII]). We define the zeta function for a global function field
K over F, analogously:

1
W) =2 (Nay

A>0
over effective divisors A, where NA = ¢9%84. This has an Euler product
(s)= [ a-@wp)=)~"
P prime

It admits a meromorphic continuation to C with simple poles at s = 0 and s = 1, and
satisfies a functional equation.

Example A.1. If K = F,(T), then (x(s) = (1 — ¢~ %) (1 —¢' %)~

The zeta function is often given in a different form. From the Euler product,

o0

Cels) = T (1 — g )

d=1

where a4 is the number of primes of K of degree d. Set u = ¢—°. The zeta function becomes

[e.9]
Zrc(u) = [ (1 =)~
d=1
Taking logarithms,
00 . oo 00 udm 00 u™
log Zk (u) = Z—adlog(l —u?) = Zad Z = Z Zdad -
d=1 d=1 m=1 n=1 \ d|n



Theorem A.2. There is a polynomial Li(u) € Zlu] of degree 2g such that Li(0) = 1,
L (0)=a1—q¢—1, and
L (u)

2l = T 1 —qu

Factor Lk (u) = H?il(l — ).
Theorem A.3 (Riemann Hypothesis). All the zeros of (i (s) lie on the line Res = 1/2.
Equivalently, |m;| = \/q for all i.
Corollary A.4. |a; — ¢ — 1| < 2g,/3.
Proof. a1 —q—1= L} (0) = —m — ... — mag, then take absolute values. [ |

This has implications for counting points on curves over finite fields. Let C' be a
nonsingular curve over F, with function field K. We claim that N,, = #C(F;»). We have
a bijection

C(Fyn) «— {(P € C,Fj-homomorphism Op/P — Fyn)}

(see e.g. [SP, Tag 01J5]). Since Op/P = F acq p, there is a homomorphism Op/P — Fn iff
deg P | n. In this case there are exactly deg P such Fj-homomorphisms. This establishes
the claim. We conclude that

OO n
u
Zclu) = exp [ 3 #0E"E
n=1
If C is an elliptic curve, then g = 1 and a1 = #C(F,). Corollary A.4 then gives Hasse’s
theorem.
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